High-sensitivity intravascular photoacoustic imaging of lipid-laden plaque with a collinear catheter design.

نویسندگان

  • Yingchun Cao
  • Jie Hui
  • Ayeeshik Kole
  • Pu Wang
  • Qianhuan Yu
  • Weibiao Chen
  • Michael Sturek
  • Ji-Xin Cheng
چکیده

A highly sensitive catheter probe is critical to catheter-based intravascular photoacoustic imaging. Here, we present a photoacoustic catheter probe design on the basis of collinear alignment of the incident optical wave and the photoacoustically generated sound wave within a miniature catheter housing for the first time. Such collinear catheter design with an outer diameter of 1.6 mm provided highly efficient overlap between optical and acoustic waves over an imaging depth of >6 mm in D2O medium. Intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque and perivascular fat was demonstrated, where a lab-built 500 Hz optical parametric oscillator outputting nanosecond optical pulses at a wavelength of 1.7 μm was used for overtone excitation of C-H bonds. In addition to intravascular imaging, the presented catheter design will benefit other photoacoustic applications such as needle-based intramuscular imaging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intravascular Optical-Resolution Photoacoustic Tomography with a 1.1 mm Diameter Catheter

Photoacoustic imaging is an emerging technology that can provide anatomic, functional, and molecular information about biological tissue. Intravascular spectroscopic and molecular photoacoustic imaging can potentially improve the identification of atherosclerotic plaque composition, the detection of inflammation, and ultimately the risk stratification of atherosclerosis. In this study, a first-...

متن کامل

High-speed Intravascular Photoacoustic Imaging of Lipid-laden Atherosclerotic Plaque Enabled by a 2-kHz Barium Nitrite Raman Laser

Lipid deposition inside the arterial wall is a key indicator of plaque vulnerability. An intravascular photoacoustic (IVPA) catheter is considered a promising device for quantifying the amount of lipid inside the arterial wall. Thus far, IVPA systems suffered from slow imaging speed (~50 s per frame) due to the lack of a suitable laser source for high-speed excitation of molecular overtone vibr...

متن کامل

Detection of lipid-laden atherosclerotic plaque by wavelet analysis of radiofrequency intravascular ultrasound signals: in vitro validation and preliminary in vivo application.

OBJECTIVES This study examined the feasibility of using a wavelet analysis of radiofrequency (RF) intravascular ultrasound (IVUS) signals in detecting lipid-laden plaque. BACKGROUND Wavelet analysis is a new mathematical model for assessing local changes in a geometrical profile of time-series signals. METHODS Radiofrequency IVUS signals of 85 arbitrarily selected vectors were acquired from...

متن کامل

High-speed intravascular photoacoustic imaging at 1.7 μm with a KTP-based OPO.

Lipid deposition inside the arterial wall is a hallmark of plaque vulnerability. Based on overtone absorption of C-H bonds, intravascular photoacoustic (IVPA) catheter is a promising technology for quantifying the amount of lipid and its spatial distribution inside the arterial wall. Thus far, the clinical translation of IVPA technology is limited by its slow imaging speed due to lack of a high...

متن کامل

Thermal intravascular photoacoustic imaging

Intravascular photoacoustics (IVPA)-a minimally invasive imaging technique with contrast related to optical absorption properties of tissue, can be used to visualize atherosclerotic plaques. However, the amplitude of photoacoustic signals is also related to a temperature dependent, tissue specific parameter-the Grüneisen parameter. Therefore, photoacoustic signals measured at different temperat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Scientific reports

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016